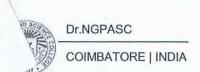
Dr. N.G.P.ARTS AND SCIENCE COLLEGE (Autonomous)

REGULATIONS 2024-25 for Post Graduate Programme
(Outcome Based Education model with Choice Based Credit System)

M.Sc. Degree

(For the students admitted during the academic year 2024-25)

Programme: M.Sc. Mathematics


Eligibility:

A candidate who has passed the Degree Examination in B.Sc. (Mathematics) or B.Sc. (Mathematics with Computer Applications) of Bharathiar University and as per the norms set by the Government of Tamil Nadu or an Examination accepted as equivalent thereto by the Academic Council, subject to such conditions as may be prescribed thereto are permitted to appear and qualify for the **Master of Science in Mathematics** Degree Examination of this College after a course of study of two academic years

Programme Educational Objectives:

The Curriculum is designed to attain the following learning goals which students shall accomplish by the time of their graduation:

- 1. To meet the demand for well trained Post Graduates in Mathematics with academic Excellence.
- 2. To demonstrate an understanding of the theoretical concepts and axiomatic underpinnings of Mathematics and an ability to construct proofs at the appropriate level.
- 3. To demonstrate competency in Mathematical modeling of complex phenomena, problem solving and decision making.
- 4. To demonstrate a level of proficiency in quantitative and computing skills sufficient to meet the growing demands of society upon modern education.

PROGRAMME OUTCOMES:

On the successful completion of the program, the following are the expected outcomes. $\label{eq:completion}$

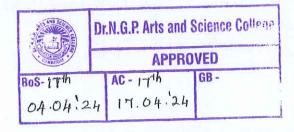
PO Number	PO Statement								
P01	Students will have knowledge, understanding and Mathematical thinking of the basic and advanced concepts, techniques from different topics								
PO2	They have a fundamental and advanced understanding of at least one Mathematical topic of their choice and able to solve problem related to the topic								
P03	They can be able to communicate clearly in writing and orallying the detailed technical arguments of complex Mathematical concepts								
P04	The students develop problem solving skill and apply them independently to problems in pure and applied Mathematics								
P05	They can develop the knowledge of formulating, analyzing and problem solving in core areas of the Mathematics including Analysis, Algebra and Statistics								

PG Credit Distribution:

Part	Subjects	No. of Papers	Credit	Semester No.
	Core	16-18	$ 13 \times 04 = 52 \\ 02 \times 03 = 06 \\ 01 \times 05 = 05 $	I - IV
	Elective	04	04 x 04 = 16	I - IV
III	EDC	01	01 x 03 = 03	II
	Industrial Training	01	01 x 02 = 02	III
	Project Work	01	01 x 08 = 08	IV
	TOTAL CREDITS		92	1-1

PG CURRICULUM

M.Sc. MATHEMATICS - AY 24-25


Course	Course Category	Course Name	L	Т	P	Instru Ho		Exa m (h)	N	Credits				
Code	Category					Week	Total		-					
						8			CIA	ESE	Total			
First Semester														
24MTP1CA	Core - I	Algebra	4	1	-2	5	60	3	25	75	100	4		
24MTP1CB	Core - II	Advanced Analysis	4	2		6	72	3	25	75	100	4		
24MTP1CC	Core - III	Ordinary Differential Equations	4	1		5	60	3	25	75	100	4		
24MTP1CD	Core - IV	Operations Research	4	1	-	5	60	3	25	75	100	4		
24MTP1CE	Core - V	Advanced Statistics	3	2	-	5	60	3	25	75	100	3		
24MTP1DA		Numerical Analysis				4	48							
24MTP1DB	DSE -I	Commutative Algebra	4	-	-	4	48	3	25	75	100	4		
24MTP1DC		Mathematical Modeling						4	48					
		Total				30	360			- 4	600	23		

Course	Course Category	Course Name	L	Т	P		uction ours	Exa m (h)	Max Marks			Credits
Couc	gj					Week	Total			ilw i	OF 10-3	
									CIA	ESE	Total	
Second Semeste	er											
24MTP2CA	Core - VI	Complex Analysis	4	1	-	5	60	3	25	75	100	4
24MTP2CB	Core - VII	Topology	4	1	-	5	60	3	- 25	75	100	4
24MTP2CC	Core - VIII	Partial Differential Equations	4	1	1	5	60	3	25	75	100	4
24MTP2CM	Core -IX	Computational Mathematics	3	-	4	7	84	3	25	75	100	5
24DAP2EB	EDC	Foundations of Data Analytics	3	1	-	4	48	3	25	75	100	3
24MTP2DA		Wavelet Analysis				4	48		ja .		ETH	
24MTP2DB	DSE -II	Information and Coding Theory	4	-	-	4	48	3	25	75	100	4
24MTP2DC		Mathematical Finance				4	48					
		Total				30	360				600	24

Course Code	Course Category	Course Name	L	Т	P		action urs	Exa m (h)	N	Iax M	arks	Credits
	outegor,		ll ll			Week	Total					
									CIA	ESE	Total	*
Third Semester	r											
24MTP3CA	Core - X	Functional Analysis	4	1	-	5	60	3	25	75	100	4
24MTP3CB	Core - XI	Classical Mechanics	3	2	-	5	60	3	25	75	100	3
24MTP3CC	Core - XII	Stochastic Differential Equations	4	2	5:-	6	72	3	25	75	100	4
24MTP3CD	Core -XIII	Advanced Graph Theory	4	1	-	5	60	3	25	75	100	4
24MTP3CE	Core - XIV	Fluid Dynamics	4	1	_	5	60	3	25	75	100	4
24MTP3CT	IT	Industrial Training	-	_	_	211	-	-	40	60	100	2
24MTP3DA		Finite Element Theory				4	48	3	25	75	100	4
24MTP3DB	DSE -III	Algebraic Number Theory	4	-	-	4	48					
24MTP3DC		Actuarial Mathematics				4	48					
1-191		Total				30	360				700	25

Course	Course Category	Course Name	L	Т	P		uction urs	Exa m (h)	N	arks	Credits	
Code						Week	eek Total					
									CIA	ESE	Total	
Fourth Semes	ter											П
24MTP4CA	Core - XV	Mathematical Methods	4	1	-	5	60	3	25	75	100	4
24MTP4CB	Core - XVI	Distribution Theory	4	1	-	5	60	3	25	75	100	4
24MTP4CV	Core - XVII	Project	-	-	16	16	192	3	80	120	200	8
24MTP4DA		Boundary Layer Theory			1	4	48	3	25	75	100	4
24MTP4DB	DSE -IV	Lie Algebra	4	_	s = 0	4	48				4	
24MTP4DC		Mathematical Ecology				4	48				-	
3	_	Total				30	360				500	20
			1.1									92

BoS Chairman/HoD
Department of Mathematics
Dr. N. G. P. Arts and Science College
Coimbatore – 641 048

DISCIPLINE SPECIFIC ELECTIVE

Students shall select the desired course of their choice in the listed elective course during Semesters I to IV

Semester I (Elective I)

List of Elective Courses

S. No.	Course Code	Name of the Course
1.	24MTP1DA	Numerical Analysis
2.	24MTP1DB	Commutative Algebra
3.	24MTP1DC	Mathematical Modeling

Semester II (Elective II)

List of Elective Courses

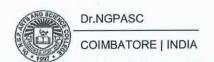
S. No.	Course Code	Name of the Course
1.	24MTP2DA	Wavelet Analysis
2.	24MTP2DB	Information and Coding Theory
3.	24MTP2DC	Mathematical Finance

Semester III (Elective III)

List of Elective Courses

S. No.	Course Code	Name of the Course
1.	24MTP3DA	Finite Element Theory
2.	24MTP3DB	Algebraic Number Theory
3.	24MTP3DC	Actuarial Mathematics

Semester IV (Elective IV)


List of Elective Courses

S. No.	Course Code	Name of the Course
1.	24MTP4DA	Boundary Layer Theory
2.	24MTP4DB	Lie Algebra
3.	24MTP4DC	Mathematical Ecology

EXTRA CREDIT COURSES

Self-study paper offered by the Mathematics Department

S. No.	Course Code	Course Title
1.	24MTPSSA	Research Methodology, IPR and Entrepreneurship
2.	24MTPSSB	Mathematics of Bioinformatics

Semester - I CORE - I : ALGEBRA

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1CA	ALGEBRA	CORE	48	12	-	4

Preamble	This course has been designed for students to learn and understand
	 elementary group theory and how to solve contemporary problems elementary principles on certain algebraic structures
Prerequisite	 Sylow's theorems that describe the structure of certain finite groups Knowledge on understanding of numbers, ratios, proportions, the order of operations,
	equality, algebraic symbolism, algebraic equations and functions.

Course Outcomes (COs)

CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level		
CO1	define the orbits and p-groups	K1		
CO2	apply Sylow theory in the factorization of polynomials	K2		
CO3	analyze the structure of finite fields	КЗ		
CO4	explain the applications of automorphisms and isomorphism	K5		
CO5	explain the applications of Galois theory	K5		

Mapping with	Program Outo	comes:	h-2		
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1	V		1	✓	✓
CO2				✓	✓
CO3		✓		✓	
CO4		✓	✓		
CO5	✓	✓	1		✓

Unit	Content	Hours	E-Contents / Resources	
	Direct Products:			
I	External direct products - internal direct products. group action on a set - fixed sets and isotropy subgroups - orbits - application on G-sets to counting: p-groups - Sylow theorems.	12	Text Book	
	Applications of the Sylow Theory and Rings of Polynomials:			
П	Applications to p-groups and the class equation - further applications. rings of polynomials: polynomials in an indeterminate - evaluation homomorphisms - division algorithm in $F[x]$ - irreducible polynomials - ideal structure in $F[x]$ - uniqueness of factorization in $F[x]$.	11	Reference Book	
	Introduction to Extension Fields:			
ш	Extension fields - algebraic and transcendental elements - irreducible polynomial for α over F - simple extensions - Algebraic extensions: finite extensions – algebraically closed and algebraic closures.	13	Text Book	
	Automorphisms of Fields:			
IV	Basic isomorphism of algebraic field theory - automorphisms and fixed fields - Frobenius automorphism - isomorphism extension theorem: extension theorem - splitting fields	14	Text Book	
u .	Separable Extensions and Galois Theory:			
V	Multiplicity of zeros of a polynomial - separable extensions- perfect fields - normal extensions - the main theorem - Galois group over finite fields - illustrations of Galois theory: symmetric functions.	10	Text Book & You Tube Videos	
	Total	60		

Text Book	1.	Fraleigh J.B, 2003,"A First Course in Abstract Algebra", Third Edition, Narosa Publishing House, New Delhi.
Reference Books	1.	Herstein I.N, 2007, "Topics in Algebra", Second Edition, Narosa Publishing House, New Delhi.
	2.	Artin M, 1991, "Algebra", Prentice-Hall of India, New Delhi.
- W	3.	Fraleigh J.B, 2014,"A First Course in Abstract Algebra", Seventh Edition, Pearson Education Limited, London.
	4.	Anderson M and Feil T, 2014, "A First Course in Abstract Algebra Rings, Groups, and Fields", Third Edition, Chapman and Hall/CRC, London.

Journal and Magazines https://www.sciencedirect.com/journal/journal-of-algebra		
E-Resources and Website	https://www.uou.ac.in/lecturenotes/science/MSCMT-19/unit%201.pdf	N.

Learning Method	Chalk and Talk/Assignment/Seminar	
------------------------	-----------------------------------	--

Focus of the	Skill Development/Employability	The second secon
Course		

Semester - I CORE - II : ADVANCED ANALYSIS

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1CB	ADVANCED ANALYSIS	CORE	48	24	_	4

Preamble	This course has been designed for students to learn and understand the concept of Riemann Stieltjes integral the inverse and Implicit function theorems about the concept of Lebesgue measure and Lebesgue integral				
Prerequisit	te Knowledge on basic Mathematics				
Course Ou	tcomes (COs)				
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level			
CO1	identify the Riemann Stieltjes Integral of various real functions	K1			
CO2	describe the properties of various forms of Uniform convergence and continuity	K2			
CO3	discuss the concept behind contraction principle of a function	К3			
CO4	demonstrate the Lebesgue measure and its properties	K4			
CO5	apply the properties of The Lebesgue integral to the bounded functions	K5			

Mapping with	Mapping with Program Outcomes:						
COs / POs	PO1	PO2	PO3	PO4	PO5		
CO1	✓	✓	✓	✓	✓		
CO2	✓	1		✓	✓ .		
CO3	✓	1	✓ \	✓	✓		
CO4	√	1		✓			
CO5	✓	✓		✓	×		

Unit	Content	Hours	E-Contents / Resources
	Riemann Stieltjes Integral:		24.4
I	Definition and existence of the integral – properties of the integral – integration and differentiation – integration of vector valued function – rectifiable curves.	15	Text Book 1
20 =	Sequences and Series of Functions:		f:
П	Uniform convergence and continuity – uniform convergence and integration - uniform convergence and differentiation – equicontinuous families of functions – the Stone Weierstrass theorem.	14	Text Book 1
	Functions of Several Variables:		
III	Linear transformation – contraction principle – inverse function theorem – implicit function theorem.	14	Text Book 1
	Lebesgue Measure:	74	
IV	Outer measure – measurable sets and Lebesgue measure – measurable functions – Littlewood's theorem.	14	Text Book 2
	Lebesgue Integral:	lg i	
V	The Lebesgue integral of bounded functions over a set of finite measure – integral of a non – negative function – general Lebesgue integral.	15	Text Book 2
.*;-	Total	72	

Text Book	1.	Walter Rudin, 1976, "Principles of Mathematical Analysis", McGraw Hill, New York. [Unit I & II : Chapter 6 & 7.Unit III: Chapter 9 (Pages 204 to 227)]
11 2 0	2.	Roydon H.L., 1988, "Real Analysis", Third Edition, Macmillan, New York. [Unit IV: Chapter 3 (except Section – 4), Unit V: Chapter 4 (Sections 2, 3 & 4 only)]
Reference Books	1.	Bartle R. G., 1976, "Elements of Real Analysis", Second Edition, John Wily and Sons, New York.
	2.	Mainak Mukherjee, 2015, "A course in Real Analysis", Narosa publishing house, New Delhi.
	3.	Tom M Apostol, 2002, "Mathematical Analysis", Narosa Publishing House Pvt Ltd., Second Edition, New Delhi.
	4.	Somasundaram D and Choudhary B, 2015, "A first course in Mathematical Analysis", Narosa Publishing House, New Delhi.

Journal and Magazines	https://www.worldscientific.com/worldscinet/bms		
E-Resources and Website	https://mathcs.org/analysis/reals/integ/measures.html		
	https://archive.nptel.ac.in/courses/111/106/111106153/		
	https://onlinecourses.nptel.ac.in/noc22_ma43/preview		

Learning Method Chalk and Talk/Assignment/Seminar					
2-22 (1-1)					
Focus of the Course	Skill Development/Employability				

Semester - I
CORE - III : ORDINARY DIFFERENTIAL EQUATIONS

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1CC	ORDINARY DIFFERENTIAL EQUATIONS	CORE	48	12	-	4

Preamble	 the first order and second order ordinary different the usages of power series method to solve different 	the usages of power series method to solve differential equations			
Prerequisite Knowledge on Ordinary Differential Equations and its ap		pplications			
Course O	itcomes (COs)	- 12			
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level			
CO1	define Legendre and Bessel equations	K2			
CO2	describe the concept of fundamental matrix of system	K3			
CO3	apply Lipschitz condition in mathematical problems	К3			
CO4	inspect the existence and uniqueness of solutions	K4			
CO5	analyze the solution using oscillatory theorems	K5			

Mapping with Program Outcomes:						
COs / POs	PO1	PO2	PO3	PO4	PO5	
CO1	✓	✓		✓	✓	
CO2		✓	✓		4	
CO3	✓	✓		✓		
CO4			✓			
CO5	✓	✓		✓	1	

Unit	Content	Hours	E-Contents A	
	Solutions in power series:			
I	Introduction - second order linear equations with ordinary points - Legendre equation and Legendre polynomials - second order equation with regular singular point - properties of Bessel functions	12	Text Book	
1, 1, 1	System of Linear differential equations:			
II	System of first order equations - model for ARMS competition between two nations - existence and uniqueness theorem - fundamental matrix.	11	Text Book & NPTEL	
	Non-homogeneous linear system:			
Ш	Non-homogeneous linear systems - linear system with constant coefficients - linear systems with periodic coefficients.	10	Text Book	
И	Existence and uniqueness of solutions:	1 1	1277	
IV	Preliminaries - successive approximations - Picard's theoremsome examples - continuation and dependence on initial conditions - existence of solutions in the large - existence and uniqueness of solutions of system.	13	Reference Book	
1	Oscillations of second order equations:		T 4 D - 1 0	
V	Fundamental results - Sturm's comparison theorem - elementary linear oscillations - comparison theorem of Hille - Winter - oscillations of x " $+a(t)x=0$	14	Text Book & You Tube Videos	
	Total	60		

Text Book	1.	Deo S.G, Lakshmikandham V and Raghavendra V, 2007, "Text book of Ordinary Differential Equations", Second Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi.
Reference Books	1.	Reid W.T, 1971, "Ordinary Differential Equations", John Wiley & sons, New York.
	2.	Coddington E.A and Levinson N, 2006, "Theory of Ordinary Differential Equations", Tata McGraw-Hill Publishing Company Limited, New Delhi.
	3.	Tesch I.G., 2012, "Ordinary Differential Equations and Dynamics Systems", American Mathematical Society, Providence.
	4.	Coddington E A, 2006, "An introduction to Ordinary Differential Equations", PHI Private Limited, New Delhi.

Journal and Magazines	https://www.worldscientific.com/worldscinet/bms
E-Resources and Website	https://www.sciencedirect.com/topics/mathematics/system-of-ordinary-differential-equations

Learning Method	Chalk and Talk/Assignment/Seminar	A Committee Comm

Focus of the Course	Skill Development/Employability	
---------------------	---------------------------------	--

Semester - I CORE - IV: OPERATIONS RESEARCH

Semester	Course Code	Course Name	Category	L	T	P	Credits
I	24MTP1CD	OPERATIONS RESEARCH	CORE	48	12	-	4

Preamble	This course has been designed for students to learn and under the dynamic, integer programming and decision analoconcept of queueing and inventory how to solve the queueing models			
Prerequisi	te Knowledge on basic Mathematics			
Course Ou	itcomes (COs)			
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level		
CO1	illustrate the characteristics of dynamic programming problem K2			
CO2	derive importance of integer programming K5			
CO3	explain the concept of Markov chain and Markov process in decision making K3			
CO4	analyze the behavior of various queueing models K4			
CO5	analyze the applications of inventory K4			

Mapping with Program Outcomes:					
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1	✓		1		
CO2		✓			✓
CO3	✓			✓	
CO4			✓		✓ ·
CO5	1	1		8	1

Unit	Content	Hours	E-Contents / Resources
I	Dynamic Programming: Prototype example for dynamic programming - characteristics of dynamic programming problems - deterministic dynamic programming.	12	Text Book
П	Integer Programming: Prototype example - some BIP applications - innovative uses of binary variables in model formulation - some formulation examples - some perspectives on solving integer programming problems.	12	Text Book
III	Decision Analysis: Prototype example - decision making without experimentation - decision making with experimentation - decision trees, Markov chains: Stochastic processes - Markov chains.	12	Text Book
IV	Queueing Theory: Prototype example - basic structure - examples of real queueing systems - role of the exponential distribution – birth and death process - queueing models based on birth and death process.	12	Text Book
	Inventory Theory: Examples - components - deterministic continuous and periodic review model - deterministic multiechelon inventory model for supply chain management.	12	Text Book/ You Tube Videos
	Total	, 60	

Text Book	1.	Frederick S. Hillier and Gerald J. Lieberman, 2010,"Introduction to Operations Research ", Nineth Edition, McGraw-Hill Companies, New Delhi
Reference Books	1.	Taha H.A, 2006, "Operations Research: An Introduction", Eighth Edition, Prentice-Hall of India Private Limited, New Delhi.
	2.	Kandiswarup, Gupta P.K and Man Mohan, 1998,"Operations Research", S. Chand & Sons Education Publications, New Delhi.
	3.	Ravindran, Phillips D.T and Solberg J.J, 2005, "Operations Research-Principles and Practice", John Wiley & Sons, New Jersey.
÷ .	4.	Hillier F and Lieberman G, 2010, "Introduction to Operations Research", Nineth Edition, McGraw-Hill Professional, New Delhi

Journal and Magazines	https://www.worldscientific.com/worldscinet/bms
E-Resources and Website	https://nptel.ac.in

Learning Method	Chalk and Talk/Assignment/Seminar
-----------------	-----------------------------------

Focus of the	Skill Development/Employability
Course	the contract of the contract to the contract t

Semester - I CORE - V: ADVANCED STATISTICS

Semester	Course Code	Course Name	Category	L	T	P	Credits
I	22MTP1CE	Advanced Statistics	CORE	36	24	1	3

Preamble	 the procedure of finding estimation 	 the methods of testing hypothesis under various conditions 				
Prerequisi	ite Knowledge on Basic Mathematics					
Course Ou	itcomes (COs)					
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level				
CO1	define the point estimation	K1				
CO2	identity the confidence intervals for population variance and population parameters	K2				
CO3	explain the procedures for hypothesis testing	К3				
CO4	analyze the linear regression models and method of solving it variance K4					
CO5	apply various types of non-parametric test to validate hypothesis K5					

Mapping with Program Outcomes:					
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1		✓		✓	
CO2	√			✓	
CO3	1	✓			✓
CO4			1	1	
CO5	✓	1			1

Unit	Content	Hours	E-Contents Resources
I	Point Estimation: Introduction - method of moments and maximum likelihood - some desirable properties of point estimators - other desirable properties.	12	Text Book
п	Interval Estimation: Introduction – large sample confidence intervals: one sample case - small sample confidence intervals for μ-A confidence interval for the population variance - confidence interval concerning two population parameters.	12	Reference Book
ш	Hypothesis Testing: Introduction – Neyman – Pearson - likelihood ratio test – hypotheses for a single parameter - testing of hypotheses for two samples - Chi-Square tests for count data.	12	Text Book
IV	Linear Regression Models: Introduction – simple linear regression model - inferences on the least square estimators - predicting a particular value.	12	Text Book
V	Non-parametric Tests: Introduction — nonparametric confidence interval — nonparametric hypothesis tests for one sample — nonparametric hypothesis tests for two independent samples — nonparametric hypothesis tests for $k \ge 2$ sample.	12	Text Book/ You Tube Videos
5	Total	60	eg - Vieno

Text Book	1.	Kandethody M. Ramachandran, Chris P and Tsokos, 2009, "Mathematical Statistics with Applications", Elsevier, Haryana.
Reference Books	1.	Irwin Miller and Marylees Miller, John E. Freund's, 2007,"Mathematical Statistics with Applications", Seventh Edition, Prentices-Hall India Pvt Ltd, New Delhi.
	2.	Hogg and Craig, 2003"Introduction to Mathematical Statistics", Pearson Education, New Delhi.
8 .	3.	J.M. Kapur and H.C. Saxena, 2001, "Mathematical Statistics", S. Chand & Co, New Delhi.
	4.	Ronald E.Walpole, Raymond H. Myers, Sharon L. Myers and Keying E. Ye, 2018, Probability and Statistics, Pearson Education, South Asia.

Journal and Magazines	www.isaacpub.org/AboutThisJournal.aspx?ids=2
E- Resources and Website	https://www.lkouniv.ac.in/site/writereaddata/siteContent/ 202004160626023624Rajiv_Saksena_Advance_Statistical_Inference.pdf

Learning Method	Chalk and Talk/Assignment/Seminar

Semester - I DSE 1: NUMERICAL ANALYSIS

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1DA	NUMERICAL ANALYSIS	DSE	48	-	_	4

Preamble	This course has been designed for students to learn and under the method of solving nonlinear equations	
Prerequisi	te Knowledge on basic Mathematics	
Course Ou	tcomes (COs)	
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level
CO1	apply the numerical method to solve nonlinear equations	K2
CO2	categorize the system of equations and solve by appropriate method	К3
CO3	examine the solution got by applying various of numerical differentiation and integration methods	К3
CO4	apply the Taylor's method to differential equations	K4
CO5	analyze the nature of solution of one and two dimensional partial differential equations	K5

Mapping with	Program Outc	omes:			
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1				No. and	
CO2	1				
CO3	1				
CO4	1	✓	1	✓	✓
CO5	1	✓	1	1	✓

Unit	Content	Hours	E-Contents / Resources
	Nonlinear Equations:		j.
I	Interval halving (Bisection) revisited - linear interpolation methods - Newton's method -fixed-point iteration: $x = g(x)$ method - multiple roots -nonlinear systems.	10	Text Book
7. a. 4	Solving System of Equations:		
П	Matrices and vectors - elimination methods - the inverse of a matrix and matrix pathology - iterative methods - parallel processing.	10	Text Book
1	Numerical Differentiation and Integration:		
ш	Numerical integration - Trapezoidal Rule - Simpson's rules - Fourier series and Fourier transforms - adaptive integration - gaussian quadrature - multiple integrals - applications of cubic splines.	10	Text Book
K 8	Numerical Solution of Ordinary Differential Equations and Optimization:		mling?du
IV	Taylor-Series Method - Euler method and its modifications - Runge-Kutta methods - multistep methods - higher-order equations and systems.	09	Text Book
	Optimization: Finding the minimum of $y = f(x)$ - minimizing a function of several variables-linear programming.	- 10	
	Numerical Solutions of Partial-Differential Equations:		
V	Elliptic equations - parabolic equations - hyperbolic equations - finite elements for ordinary and partial differential equations.	09	Text Book
8	Total	48	

Text Book	1.	Gerald C. F. and Wheatley P. O., 1999, "Applied Numerical Analysis", 7th Edition,
- Bullette -	1.	Pearson Education, New York.
Reference	erence 1. Smith. G. D., 1985, "Numerical Solution of Partial Differential Equations –	
Books	1.	Difference Methods", Oxford University Press, Oxford.
Ja		Jain M. K., Iyengar S. R. K. and Jain R. K., 1993, "Numerical Methods for Scientific and
W. COST	2.	Engineering Computation", 3 rd Edition, Wiley Eastern Ltd, Noida.
Marghitu D. B. and Dupac M., 2012, "Advanced Dynamics: Analyti		Marghitu D. B. and Dupac M., 2012, "Advanced Dynamics: Analytical and Numerical
		Calculations with MATLAB", Springer, New York.
	1	Samuel Conte D. and Boor C. D., 1983, "Elementary Numerical Analysis", McGraw-
4 /5	4.	Hill International Edition, New Delhi.

Journal and Magazines	https://www.sciencedirect.com/journal/applied-numerical-mathematics,
E-Resources and Website	https://www.math.wsu.edu/math/kcooper/M448/resources.php, https://nptel.ac.in

Learning Method	Chalk and Talk/Assignment/Seminar	en en la Carlo
-----------------	-----------------------------------	----------------

Focus of the	Skill Development/Employability
Course	

Semester - I DSE I: COMMUTATIVE ALGEBRA

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1DB	COMMUTATIVE ALGEBRA	DSE	48		-	4

Preamble					
Prerequisi	te Knowledge on Modern Algebra	la en la companya de			
Course Ou	tcomes (COs)				
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level			
CO1	define new modules using operations like tensor product and other operations	K1			
CO2	discuss the construction of field	K2			
CO3	demonstrate the concept of integral dependence of extension ring and chain conditions of modules.	K3			
CO4	analyze the importance of discrete valuation of rings and dedekind domains	K4			
CO5	summarize the various forms of dimension theory and its influence in local rings	K5			

lapping with	Program Outc	omes:		and sapplicated	
COs / POs	PO1	PO2	PO3	PO4	PO5
CO1	√	1	✓	1	1
CO2	✓		✓	✓	1
CO3	✓	1		/	/
CO4	✓	1	✓	1	1
CO5	✓	✓		1	✓

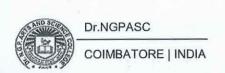
Unit	Content	Hours	E-Contents / Resources
	Rings and Ideals:	Parl Will	
I	Rings and ring homomorphisms - ideals - quotient rings - zero divisors, nilpotent elements, units - prime ideal and maximal ideals - nilradical and Jacobson radical - operations on ideals - extension and contraction.	09	Text Book
*: <u>#</u>	Modules: modules and module homomorphisms – submodulus and quotient modulus - operations on submodules - finitely generated modulus.		
II	Rings, modules of fractions and primary decomposition: Local properties - extended and contracted ideals in rings of	09	Reference Book
2.1 .00	fractions - primary decomposition.		Book
	Integral dependence and valuations:		
III	Integral dependence - the going up theorem -Integrally closed integral domains - the going down theorem - valuation rings - Chain conditions.	09	Text Book
	Noetherian rings, artin rings, Discrete valuation rings and Dedekind domains:		
IV	Primary decomposition in Noetherian rings - artin rings - structure theorem for artin rings - discrete valuation rings - dedekind domains - fractional ideals.	09	Text Book /NPTEL
	Completions and Dimension Theory:		
V	Topologies and completions - filtrations - graded rings and modules - the associated graded ring - Hilbert functions - dimension theory of Noetherian local rings - regular local rings - transcendental dimension.	12	Text Book /You Tube Videos
	Total	48	

Text Book	1.	Atiyah-Macdonald, 1994, "Commutative Algebra", Westview Press, London.
Reference Books	1.	Zariski and Samuel, 1991, "Commutative Algebra I, II", Springer, New York.
	2.	Eisenbud, 1995, "Commutative Algebra with a View Towards Algebraic Geometry", Springer, New York.
	3.	Bourbaki, 1989, "Commutative Algebra", Springer, New York.
	4.	Herstein I N, 2000, "Topics in Algebra", Second Edition, John Wiley and Sons, New Jersey.

Journal and	https://www.worldscientific.com/worldscinet/bms
Magazines	
E-Resources and	https://nptel.ac.in
Website	

Learning Method	Chalk and Talk/Assignment/Seminar
7 11 2 15 1 10	

Focus of the	Skill Development/Employability	
Course		

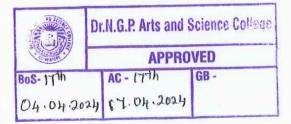

Semester - I DSE I: MATHEMATICAL MODELING

Semester	Course Code	Course Name	Category	L	Т	P	Credits
I	24MTP1DC	Mathematical Modeling	DSE	48	-	-	4

Preamble	erstand	
Prerequisit	e Knowledge on Basic Mathematics	
Course Ou	tcomes (COs)	Today and
CO Number	Course Outcomes (COs) Statement	Bloom's Taxonomy Knowledge Level
CO1	describe the optimal power and exponential models	K2
CO2	discuss the dimensional analysis and similarity	K2
CO3	apply the concept of probability density function to define stochastic states	К3
CO4	analyze the properties of various forms of changes using modeling	K4
CO5	develop the models for situations involving evolution theory	K5

Mapping with Program Outcomes:						
COs / POs	PO1	PO2	PO3	PO4	PO5	
CO1	✓	✓	√			
CO2	✓		✓			
CO3		1		✓		
CO4			✓	✓		
CO5		✓		1	✓	

Unit	Content	Hours	E-Contents / Resources
0	Deterministic Analysis of Observations:		
I	Data transformations: Linear model – polynomial models – population modeling – global warming modeling - model errors – optimal linear models – optimal quadratic models – optimal power and exponential models.	9	Text Book
	Deterministic States:		Text Book &
II	Dimensional analysis and similarity - applications of low-complexity - applications of medium complexity- time measurement - applications of high-complexity.	10	Reference Book
	Stochastic States:	To the last	
III	Probability density functions – models for probability density functions – data analysis – real distribution.	9	Text Book
	Deterministic and stochastic Changes:		
IV	Linear changes - linear changes with delays - nonlinear changes - linear stochastic changes - diffusion - Brownian motion - population dynamics.	10	Text Book
	Deterministic and Stochastic Evolution:		
V	Heat and Mass Transfer: Balance – Newton's laws of motion: oscillations – population ecology: growth and self-limitation – oscillations and collapse - PDF evolution equations - Solutions to the Fokker Plank equation.	10	Text Book & You Tube Videos
	Total	48	


Text Book	1.	Stefen Heinz, 2011, "Mathematical Modeling", Springer-Verlag, New York.
Reference Books	1.	Kapur J.N., 1998, "Mathematical Modeling", New Age International (P) Limited, New Delhi.
S.	2.	Crossand and Moscrcadini A.O, 1976, "The Art of Mathematical Modeling", Ellis Harwood and John Wiley, New York.
	3.	Sarah. P.Otto and Troy Day, 2000, "A Biologist guide to Mathematical Modeling in Ecology and Evolution", Princeton University Press, Princeton.
	4.	Frank. R.Glordance, Maurice D. Weir and William P.Fox, 2003, "A First course in Mathematical Modeling", Thomson Learning, London.

Journal and Magazines	https://www.sciencedirect.com/journal/applied-mathematical-modelling	
E-Resources and Website	https://en.wikipedia.org/wiki/Mathematical_model#:~:text=A%20mathematical% 20model%20is%20an,model%20is%20termed%20mathematical%20modeling.	ø

Learning Method	Chalk and Talk/Assignment/Seminar
-----------------	-----------------------------------

Focus of the Course	Skill Development/Employability
Course	

BoS Chairman/HoD
Department of Mathematics
Dr. N. G. P. Arts and Science College
Coimbatore – 641 048

